					1		
Geome	try Lomac 2015-2016	Date <u>12/2</u>	due <u>12/3</u>	Factoring	Polynomials 6.3L		
Name LO:	I can factor polynomial express	sions.	Per		■ ★ ● ★ ★ emath 7.3		
☐ DO I	NOW On the back of this pa	cket					
<u></u> (1)	Greatest Common Factor						
	Factoring expressions is one of the gateway skills that is necessary for much of what we do in algebra for the rest of the course. The word factor has two meanings and both are important.						
	THE TWO MEANINGS OF FACTOR 1. Factor (verb): To rewrite an algebraic expression as an equivalent product. 2. Factor (noun): An algebraic expression that is one part of a larger factored expression.						
	Exercise #1: Consider the ex	expression $6x^2 +$	15x.				
	(a) Write the individual terms $6x^2$ and $15x$ as completely factored expressions. Determine their greatest common factor . (b) Using the Distributive Property, $6x^2 + 15x$ as a product involving the gcf				1 2		
	$6x^2 = 15.$	<i>x</i> =					
	(c) Evaluate both $6x^2 + 15x$ does this support about the			you wrote in (b) for $x = 2$. What	do you find? What		

It is important that you are **fluent** reversing the **distributive property** in order to factor out a common factor (most often the greatest common factor). Let's get some practice in the next exercise just identifying the greatest common factors.

Exercise #2: For each of the following sets of monomials, identify the greatest common factor of each. Write each term as an extended product (if necessary).

(a)
$$12x^3$$
 and $18x$

(b)
$$5x^4$$
 and $25x^2$

(c)
$$21x^2y^5$$
 and $14xy^7$

(d)
$$24x^3$$
, $16x^2$, and $8x$

(e)
$$20x^3$$
, $-12x^2$, and $28x$

(f)
$$18x^2y^2$$
, $45x^2y$, and $90xy^2$

(2) Factoring Polynomials Monimial GCF

Once you can identify the greatest common factor of a set of monomials, you can then easily use it and the distributive property to write equivalent factored expressions.

Exercise #3: Write each polynomial below as a factored expression involving the greatest common factor of the polynomial.

(a)
$$6x^2 + 10x$$

(b)
$$3x - 24$$

(c)
$$10x^2 - 15x$$

(d)
$$4x^2 + 8x + 24$$

(e)
$$6x^3 - 8x^2 + 2x$$

(f)
$$10x^3 - 35x^2$$

(g)
$$10x^2 - 40x - 50$$

(h)
$$8x^4 - 2x^2$$

(i)
$$8x^3 + 24x^2 - 32x$$

(3) Factoring Polynomials Binomial GCF

Being able to **fluently** factor out a gcf is an essential skill. Sometimes greatest common factors are more complicated than simple monomials. We have done this type of factoring back in Unit #1.

Exercise #4: Rewrite each of the following expressions as the product of two binomials by factoring out a common binomial factor.

(a)
$$(x+5)(x-1)+(x+5)(2x-3)$$

(b)
$$(2x-1)(2x+7)-(2x-1)(x-3)$$

(4) Factoring Polynomials Binomial GCF

5. Rewrite each of the following expressions as the product of two binomials by factoring out a common binomial factor. Watch out for the subtraction problems (b) and (d).

(a)
$$(x+5)(x+1)+(x+5)(x+8)$$

(b)
$$(2x-1)(3x+5)-(2x-1)(x+4)$$

(c)
$$(x-7)(x-9)+(x-7)(4x+5)$$

(d)
$$(x+1)(5x-7)-(x+1)(x-3)$$

(5) Polynomial Reasoning

APPLICATIONS

- 6. The area of a rectangle is represented by the polynomial $16x^2 + 56x$. The width of the rectangle is given by the binomial 2x + 7.
 - (a) Give a monomial expression in terms of x for the length of the rectangle. Show how you arrived at your answer.
- (b) If the length of the rectangle is 80, what is the width of the rectangle? Explain your thinking.

REASONING

- 7. These crazy polynomials keep acting like integers. We can factor integers to determine their factors. We can also do the same for polynomials.
 - (a) List all of the positive factors of the integer 12 by writing all possible positive integer products (such as 12 = 3.4).
- (b) List all of the factors of $2x^2 6x$ by also writing all possible products, such as

 $2(x^2-3x)$.

- 8. Which of the following is *not* a factor of $4x^2 + 12x$?
 - (1) x+3
- (3) 3x

(2) x

(4) 4

\square (6) **Exit Ticket**

ON THE LAST PAGE

Homework \square (7)

FLUENCY

- 1. Identify the greatest common factor for each of the following sets of monomials.
 - (a) $6x^2$ and $24x^3$

(b) 15x and $10x^2$

(c) $2x^4$ and $10x^2$

- (d) $2x^3$, $6x^2$, and 12x
- (e) $16t^2$, 48t, and 80
- (f) $8t^5$, $12t^3$, and 16t
- 2. Which of the following is the greatest common factor of the terms $36x^2y^4$ and $24xy^7$?
 - (1) $12xy^4$
- (3) $6x^2y^3$
- (2) $24x^2y^7$
- (4) 3xy
- 3. Write each of the following as equivalent products of the polynomial's greatest common factor with another polynomial (of the same number of terms). The first is done as an example.
 - (a) 8x 28

(b) 50x + 30

(c) $24x^2 + 32x$

$$=4(2x-7)$$

(d) 18-12x

- (e) $6x^3 + 12x^2 3x$
- (f) $x^2 x$

- (g) $10x^2 + 35x 20$
- (h) $21x^3 14x$

(i) $36x - 8x^2$

(i) $30x^3 - 75x^2$

(k) $-16t^2 + 96t$

- (1) $4t^3 32t^2 + 12t$
- 4. Which of the following is *not* a correct **factorization** of the binomial $10x^2 + 40x$?
 - (1) 10x(x+4)
- (3) 5x(2x+4)
- (2) $10(x^2+4x)$ (4) 5x(2x+8)

$\overline{}$
:)
\sim

Exit Ticket	Name	Date	Per	6.3L

The LO (Learning Outcomes) are written below your name on the front of this packet. Demonstrate your achievement of these outcomes by doing the following:

(1) Write the polynomial below as a product involving the GCF.

$$6a^3 - 12a + 3a^5$$

(2) Write the expression as a product of two binomials by factoring out a common binomial factor.

$$(3x-4)(7x+4) - (3x-4)(x-5)$$

DO NOW	Name	Date	Per	6.3L

(1) Translation to algebra progress. Write one or more algebraic statement(s) to represent this situation. Be sure to write at least one "Let" statement to define any variables.

A company is mixing a blend of two different coffees. The first kind (x) costs \$8 a pound, and the second (y) costs \$5 per pound. How many pounds of each should they use if they want 60 pounds of coffee that costs \$375?